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Abstract

This paper presents a consistent theoretical and computational framework for upscaling in random microstructures. We
adopt an information theoretic approach in order to quantify the informational content of the microstructural details and
find ways to condense it while assessing quantitatively the approximation introduced. In particular, we substitute the high-
dimensional microscale description by a lower-dimensional representation corresponding for example to an equivalent
homogeneous medium. The probabilistic characteristics of the latter are determined by minimizing the distortion between
actual macroscale predictions and the predictions made using the coarse model. A machine learning framework is essen-
tially adopted in which a vector quantizer is trained using data generated computationally or collected experimentally. Sev-
eral parallels and differences with similar problems in source coding theory are pointed out and an efficient computational
tool is employed. Various applications in linear and non-linear problems in solid mechanics are examined.
Published by Elsevier Inc.
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1. Introduction

Several experimental results and computer simulations have revealed that the behavior and response of
engineering materials is a result of the synergy between phenomena that occur in various length scales. The
microstructural heterogeneity gives rise to distinct macroscale phenomena and can have a dramatic effect in
the their overall performance. In cases where the variability in the physical or mechanical properties that affect
the behavior of the system is large, computational analysis in the context of traditional numerical schemes (e.g.
Finite Elements, Finite Differences) requires that the size of the discretization be particularly small in order to
accurately capture that heterogeneity. The resulting system of equations would however be prohibitively large
for current or even foreseeable computational capabilities. Hence there is a dire need for general multiscale
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methods that are able to incorporate microstructural information in a computationally efficient manner and
provide accurate predictions for the macroscale response.

An important aspect that has been largely ignored in related efforts thus far is that of uncertainty. Indeed,
the majority of materials demonstrate randomness in the microscale as local micro-properties exhibit stochas-
tic fluctuations. In multiphase materials for examples the distribution of the constituent phases in space does
not necessarily follow a particular pattern and is characterized by disorder. Furthermore, uncertainty arises
from error in the measurements which is unavoidable even if those are performed in the controlled environ-
ment of a laboratory. Finally, limited or complete lack of knowledge regarding microstructural details that
might take place in a few micrometers or millimeters can introduce additional uncertainties. Even if this infor-
mation is available (as it is sometimes possible nowadays due to the prodigious increase in resolution of mod-
ern imaging techniques) the amount of data would be tremendous and its direct use impracticable.

It is therefore obvious that a probabilistic framework provides a sounder basis for the representation of
heterogeneous media as it can quantify the uncertainties associated with microstructural details and allow
for rational predictions for the reliability of the system under investigation [29]. Furthermore, statistical tech-
niques can be used in order to reveal patterns in large volumes of microstructural data thus allowing not only
fast representation of microstructural information but also efficient exploration of structure–property rela-
tions. The significance of such a formulation has in fact been recognized in recent workshops organized by
the DoE Office of Science on Multiscale Mathematics [8] where it was pointed out that key simulation issues
involve the representation of information transfer across levels of scale and type (e.g. stochastic to determin-
istic, discrete to continuous, interscale coupling) as well as the determination of the propagation of uncertainty
across scales and physical phenomena.

This paper proposes a multiscale analysis procedure that is based on learning from data rather than exhaus-
tive physical and numerical modeling [9]. Even though this is in contrast to traditional research practices, we
do not dismiss significant work that has been done in this area [15,14,26,10] which in fact can significantly
complement the proposed method.

The trend of learning from data (machine learning) which is quite prevalent in statistical circles, is neces-
sitated in multiscale material problems by two basic reasons:

(1) The large amount of data that the analyst must process when dealing with microstructures.
(2) The inherent uncertainties of microstructural details which as discussed earlier must be accounted for.

A large number of existing approaches have concentrated on deriving effective properties based on the
microstructural details i.e. estimating the properties of an equivalent homogeneous medium which on the mac-
roscale behaves as the original material [2]. The microstructural details are therefore appropriately condensed
and lower-dimensional representations are used which incorporate in some way the underlying information.
The solution obtained does not contain any high-frequency fluctuations and under certain conditions is a good
approximation to coarse scale behavior. Many classical homogenization techniques are based on the essential
assumption that the properties of interest (i.e. stiffness, conductivity, etc.) are periodic on the fine scale or pos-
tulate the existence of a representative volume element from which effective values for these properties can be
derived. In general however, these conditions are not met in realistic materials where multiple length scales,
not known a priori, co-exist and randomness precludes the existence of a representative volume element.

In the context of random heterogeneous materials, we must deal instead with an ensemble of possible
microstructural configurations (each occurring with a certain probability) rather than a single one. Hence
the procedures of homogenization obtain a new meaning as they have to be valid on a whole range of micro-
structures. Even though randomness introduces an additional level of difficulty to the problem, it also provides
a more general perspective as upscaling of the microstructural information does not have to be accurate for all
possible configurations but, in an average sense at least, lead to predictions that retain the most important
response characteristics.

The present paper employs ideas and concepts from information theory in order to quantify the microstruc-
tural information and find ways to ‘‘upscale’’ it while assessing quantitatively the approximation introduced.
In particular, we substitute the high-dimensional microscale description by a lower-dimensional representa-
tion. The probabilistic characteristics of the latter are determined by minimizing the distortion between actual
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macroscale predictions and the predictions made using the coarse model. These predictions of the response of
the system can be obtained computationally using traditional numerical procedures or some of the recently
developed deterministic upscaling methodologies or even experimentally. It is shown that the aforementioned
problem is equivalent to designing a vector quantizer in source coding theory with a rather complicated dis-
tortion function nevertheless [7]. The paper is organized as follows: In the next section, we provide an intro-
duction to the information theoretic concepts and tools that are used in order to perform upscaling in random
heterogeneous microstructures. We discuss the computational details of the method of deterministic annealing
that is used in order to design the vector quantizer. In the last section, we present several applications of the
methodology in linear and non-linear problems.

2. Methodology

As mentioned earlier, the approach followed in this paper is information theoretic. Information theory pro-
vides a general mathematical framework originally developed in communication [27] in order to deal with the
problems of data compression and transmission. One of the most important contributions of Shannon’s trea-
tise was the quantification of redundancies in a signal and discovery of representations that retain its informa-
tional content while requiring a shorter description. The parallels one can draw with multiscale problems are
obvious. The signal is the microstructural details and the goal is to find compression schemes that result in a
shorter but as informative representation i.e. without depleting its salient characteristics. At this juncture we
should point out two fundamental differences.

Firstly, in contrast to information theory where entropy provides an absolute measure of the description
length (in terms of bits per symbol for example) that we want to reduce, in heterogeneous media it is the
dimension of the description vector (which is essentially equivalent to length scale of heterogeneity), say X

which we want to minimize. Even though entropy cannot directly be used as a measure of description size
in our case, relative measures can be meaningfully extended to multiscale representations. One such indicator
is the mutual information IðX;YÞ where Y corresponds to a lower-dimensional description of the microscale
details. A representation by Y implies that larger regions of the domain of interest can be assigned the same
value and hence the dimension of Y is smaller. If X and Y are random as is the case in random media, then
IðX;YÞ ¼
Z

pXY ðx; yÞ log
pXY ðx; yÞ

pX ðxÞpY ðyÞ
dxdy ð1Þ
where pXY is the joint density of ðX;YÞ and pX and pY the respective marginals. Mutual information measures
the average information that knowledge of Y can provide about X and vice versa. It attains its minimum value
zero when X is independent of Y (i.e. pðX;YÞ ¼ pX ðXÞpY ðYÞ) and its maximum value i.e. the entropy of X,
HðXÞ ¼ �

R
pX ðxÞ log pX ðxÞdx when X ” Y.

The second significant difference with communication problems involves the fidelity of the compression.
In traditional problems of information theory this is measured with respect to the source signal itself mean-
ing by how close the compressed representation matches the original when the former is uncompressed. In
random heterogeneous media however, we are not interested in the microstructural details per se but only in
those features that affect the response of the system. Hence, an appropriate measure of the fidelity of our
compression should be expressed with respect to the response. We will return to this subject and provide
quantitative measures in the following section where we also give a short description of the respective theory
of compression in information theory and the arsenal of methods that have been developed to address this
problem.

2.1. Lossy data compression, rate–distortion theory and vector quantization

Since the subject is not directly related to the scope of the journal we feel inclined to provide a few intro-
ductory remarks that will bridge this gap. Interested readers could look into the several references provided in
the sequence.

One of the most important contributions of Shannon’s original papers was the introduction of rate–distor-
tion theory or lossy data compression [27,28]. The rate–distortion function is essentially a generalization of the
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concept of entropy. It provides the optimal bounds for a compression scheme in cases where the decompressed
signal does not need to be exactly the same as the original source. As Berger puts it in his book on the subject
[3], rate–distortion theory is a means for ‘‘separating the wheat from the chaff’’. It arose from the fact that in
many practical applications, it is not necessary to exactly reproduce the source signal but rather an appropri-
ate approximation is sufficient. Naturally, this immediately gives rise to the question of how that error is to be
measured (or equivalently what would be a good metric). Obviously the answer to the last question is not
unique and strongly depends on the context. Generally, a distortion function is introduced dðX;YÞ which
assigns a non-negative number to each pair of representations X and Y. According to rate–distortion theory
for every source and distortion measure there exists a function R(D) (called rate–distortion function), where R

represents the rate (i.e. in bits per symbol) and D the average value of the distortion, that provides the (asymp-
totic) limit of achievable encoding compression schemes.

In the words of Blahut [4], rate–distortion theory is concerned with the average amount of information
about the source that must be preserved by any data compression scheme such that the reproduction can sub-
sequently generated from the compressed data with average distortion less than or equal to some specified
level. Intuitively, if the average distortion D is specified, then any compression must retain an average of at
least R(D) bits per source letter and conversely compression arbitrarily close to R(D) is possible by an appro-
priate selection of the compression scheme.

Even though the theory provides the optimal bound it does not directly suggest techniques for finding this
optimal encoding scheme. Several other problems such as classification or clustering or pattern recognition
encountered in machine learning share similar motivations and solution tools. Vector Quantization (VQ) is
a term often equivalent with source coding or lossy data compression and describes the operation by which
an N-dimensional random vector X with distribution pX(X) (in practice the distribution itself might not be
available but rather samples Xi drawn from pX) is encoded by an ensemble of codebook vectors (usually finite
in number) Y 2 Rn with distribution pY(Y) such that the entropy of the latter H(Y) is smaller than H(X) (and
hence can be compressed to a higher rate). In most applications in communication (image and voice compres-
sion) the dimension of the codebook vectors Y, n is equal to N i.e. that of the original vector.

An indispensable component of every compression scheme is of course the distortion function which pro-
vides a measure of fidelity. As mentioned earlier, in random heterogeneous media the distortion function
should not be expressed with respect to the microstructural representation X itself but rather in terms of
the response due to X. The latter can in general be represented by a function r(X) which can be a scalar, vector
or even matrix-valued depending on the response components that are of interest. Let Y denotes a lower-
dimensional representation. In the following derivations we assume that r is scalar and adopt the following
distortion function:
dðX;YÞ ¼ ðrðXÞ � rðYÞÞ2 ð2Þ

where r(Y) corresponds to the response due to a the compressed representation Y. It should also be noted that
in practical applications, the function r is not known analytically but it is implicitly defined by the numerical
solver. Furthermore, calculating values of the response is generally easier for r(Y) than r(X) as Y corresponds
to a coarser discretization and the system of equations that must be solved is smaller.

Without loss of generality and for notational economy, in the following presentation we assume that the
encoding of the N-dimensional random vector X describing the microstructural details (i.e. the value of a
material property in N micro-domains) will be represented by a random variable Y which essentially corre-
sponds to the equivalent homogenized property of the medium. Let dðX; Y Þ : RN � R! Rþ denote the distor-
tion function as defined above which is always non-negative. Our goal is dual. Firstly we seek the encoding
scheme i.e. the mapping from X to Y that leads to the minimum possible distortion and secondly to determine
that minimal value. The latter corresponds to the best homogenization or upscaling scheme that can be
achieved in terms of the distortion function adopted. Determining the optimal encoding scheme involves
essentially evaluation of the distribution of Y i.e. pY(y). Once this has been found then the original microstruc-
tural ensemble (described by the random vector X) can be substituted with a homogeneous medium (described
by the scalar Y). The response predictions made by the homogeneous medium will not deviate on average
more than the corresponding distortion value. A schematic illustration of the proposed procedure is depicted
in Fig. 1. Apart from those objectives which are perhaps the most important in terms of practical implications,



Fig. 1. Schematic illustration of proposed methodology: an ensemble of equivalent homogeneous media is constructed so that it recovers
the response predictions of the actual random microstructure.
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the present formulation will provide various sub-optimal encoding schemes and their respective distortions in
the response predictions.

The design of vector quantizers such as the one sought herein involves several intricacies. Interested readers
are directed to the book of Gersho and Gray [13] where several details are provided regarding structure, mea-
suring performance, optimality and design. The most popular procedure for carrying out such a task is the
generalized Lloyd algorithm [19] sometimes known as the k-means algorithm and its extensions. It is an iter-
ative optimization procedure in which the codebook and the partition of the original space are successively
updated. Despite its popularity and success in several problems it can at times get trapped into local minima.

For that purpose we employ the technique of Deterministic Annealing developed first by Rose in [22] and
further expanded in [23,24]. As its name suggests, it represents a marriage between the powerful simulated
annealing technique from stochastic global optimization and deterministic procedures which direct the ran-
dom search in directions that are highly likely to lead to improvement of the objective function. In contrast
to the basic form of the generalized Lloyd algorithm, deterministic annealing possesses the ability to move past
local minima and approach if not match the global optimum.

In the following we present an alternative derivation of the original procedure which has several similarities
with evaluating rate–distortion function in lossy data compression and it is novel in that respect but neverthe-
less leads to the same basic formulas as in the original papers [23,24].

Without loss of generality and for notational economy, it is assumed henceforth that X and Y are discrete
variables and therefore integrals can be substituted by summations. Subscripts in the probability mass func-
tions will also be omitted. We start from the basic assumption that the mapping between X to Y is not deter-
ministic i.e. there is not a single Y corresponding to each X but rather this relationship can be expressed by a
conditional probability distribution p(Y/X). At the limit this association probability should approach a delta
function in the sense that each X will be represented/encoded by a single Y. The reason for the introduction of
p(Y/X) will become apparent in the sequence. The objective function to be minimized is now the expected
distortion:
D ¼ E½dðX; Y Þ� ¼
X
X;Y

pðXÞpðY =XÞdðX; Y Þ ð3Þ
At this form, the minimizer of D with respect to p(Y/X) will be a delta function which assigns to each X = x

the Y that minimizes dðx; Y Þ. Instead we employ the principle of simulated annealing and relax the aforemen-
tioned difficult optimization problem by augmenting the problem with the constraint IðX; Y Þ 6 R where R is
an arbitrary positive number and IðX; Y Þ the mutual information between the fine and coarse scale descrip-
tions X and Y, respectively, i.e. (from Eq. (1)):



306 P.S. Koutsourelakis / Journal of Computational Physics 226 (2007) 301–325
IðX; Y Þ ¼
X
X;Y

pðXÞpðY =XÞ log
pðY =XÞ

qðY Þ ð4Þ
where
qðY Þ ¼
X

X

pðXÞpðY =XÞ ð5Þ
is the marginal of Y. As mentioned earlier IðX; Y Þ measures the dependence between X and Y or equivalently
the information that knowledge of one carries about the other. On one limit, i.e. when IðX; Y Þ ¼ 0, the coarse
and fine scale descriptions are independent and therefore, no information about X is contained in Y. As
IðX; Y Þ increases so does the dependence between X and Y and so does the information that knowledge of
Y can provide about the underlying X. Hence by imposing the aforementioned constraint and gradually
increasing R we are able to get more informative code-vectors. The inequality constraint thus has a regular-
izing effect. The respective Lagrangian then takes the following form:
F ¼ Dþ T ðIðX; Y Þ � RÞ ð6Þ

where T is a Lagrange multiplier which must be non-negative and satisfies the Karush–Kuhn–Tucker condi-
tion i.e. T ðIðX; Y Þ � RÞ ¼ 0 at the optimal point. The minimization of F with respect to p(Y/X) is in fact equiv-
alent to minimizing IðX; Y Þ with the inequality constraint D < D0 (where D0 is an arbitrary positive constant)
which would involve the Lagrangian Fc:
F c ¼ IðX; Y Þ þ bðD� D0Þ ð7Þ

Obviously, both Lagrangians F and Fc are simultaneously optimized by the same p(Y/X) for b = T�1 and
therefore, the two minimization problems are equivalent. The latter however represents the formulation for
finding a rate–distortion curve R(D0) [3,7] i.e. minimizing the mutual information for a certain distortion level
D0.

It is worth pointing out that T plays the role of temperature in simulated annealing and can be used as a
free parameter. For large values of T, minimizing F mainly implies minimizing I. As T is lowered a possible
decrease in mutual information is outweighed by reduction of the actual distortion D. If T is large, then
increasing the number of code-vectors Y will decrease D but increase I and hence lead to moderate if any
decrease of the Lagrangian. For small T, variations in I by changes in Y do not have as much of an effect
as an actual decrease in D. In a sense, the average distortion D and mutual information I are actually com-
peting meaning we can increase the complexity in Y in order to reduce D (in the case of over-fitting we can
introduce a Y for every X) but this will lead to an increase in I which is highly penalized when T is large. Hence
by selecting an appropriate cooling schedule (i.e. decrease in T) we can achieve a gradual approach to the glo-
bal minimum and evade possible local minima in the process.

By considering the gradient of F with respect to p(Y/X) we arrive to the following condition regarding the
optimum p*:
p�ðY =XÞ ¼
qðY Þ expð� dðX;Y Þ

T Þ
ZðXÞ ð8Þ
where ZðXÞ ¼
P

XqðY Þ exp � dðX;Y Þ
T

� �
is the normalizing constant. Hence the optimal p(Y/X) is a Gibbs distri-

bution which converges to a delta as T goes to zero. The corresponding minimum of F say F* arises by substi-
tuting Eq. (8) in Eq. (6):
F � ¼ �T
X

X

pðXÞ log ZðXÞ þ TR ð9Þ
We can overlook the constant TR since the actual value of the minimum F* is not important but rather the
minimizer, and focus on minimizing:
F � ¼ �T
X

X

pðXÞ log
X

X

qðY Þ exp � dðX; Y Þ
T

� �
ð10Þ
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with respect to the free parameters q(Y) i.e. the marginal of Y. We assume without loss of generality that q(Y)
can be sufficiently approximated by a discrete distribution where yi indicate the atoms and qi the respective
probabilities such that

P
iqi ¼ 1. It should be noted that the number of the atoms is initially unknown. Hence

F* needs to be minimized with respect to the free parameters yi and qi. This is equivalent to minimizing the
unconstrained Lagrangian:
F 0 ¼ F � � k
X

i

qi � 1

 !
ð11Þ
The sufficient conditions arise by setting the gradient of F 0 equal to zero i.e.:
oF 0

oyk

¼ 0 ¼
X

X

pðXÞp�ðyk=XÞ odðX; ykÞ
oyk

ð12Þ
and
oF 0

oqk

¼ 0 ¼ �T
X

X

1

ZðXÞ exp � dðX; ykÞ
T

� �
þ k ð13Þ
Given Eq. (8) the latter implies that
P

XpðXÞ p�ðY =XÞ
qðY Þ ¼ k

T . By the definition of q(Y) (Eq. (5)) we therefore have
that k

T ¼ 1 i.e. k = T and by substitution in Eq. (13):
X
X

1

ZðXÞ exp � dðX; ykÞ
T

� �
¼ 1 ð14Þ
It should be noted that Eqs. (12) and (14) are identical to Eqs. (28) and (33) of Rose’s paper [24] which were
derived following a different process but based on the same assumptions.

Instead of a summary, we present the basic steps of the algorithmic implementation of the deterministic
annealing. Let K denote the size of the population of code-vectors yi:

(1) Initialize by selecting a high enough value for T = Tmax and K = 1. Select arbitrary y1 and q1 = 1.
(2) For i ¼ 1; 2; . . . ;K update p(yi/X), qi and yi based on Eqs. (8), (5) and (12), respectively i.e.:
pðyi=XÞ ¼
qi exp� dðX;yiÞ

TPK
l¼1ql exp� dðX;ylÞ

T

ð15Þ

qi ¼
X

X

pðXÞpðyi=XÞ ð16Þ
(where the integration with respect to X is generally performed by Monte Carlo i.e. by simulating vectors
fXjgM

j¼1 from the distribution pX and approximating the update for qi by 1
M

PM
j¼1pðyi=XjÞ)
yi ¼ r�1

P
X pðXÞpðyi=XÞrðXÞ

qi

� �
ð17Þ
where r�1 is the inverse of the response function (further details are provided in the applications. As before,
the summation with respect to X is performed by Monte Carlo estimators. For certain distortion measures or
responses functions Eq. (12) does not have a unique solution (see Section 3). In these cases we select the solu-
tion that results in the minimal average distortion).

(3) Check for convergence in terms of yi and qi. If it has not been achieved repeat the previous updating step.
Otherwise:

(4) Reduce temperature T, i.e. T = aT (where a < 1).
(5) Double the number of code-vectors yi i.e. K = 2K by setting yK+i = yi and qK+i = qi and goto step 2.

It should be noted that the last step is necessary since the number of atoms K that minimize the objective
function is unknown a priori for each T. In order to capture the phase transitions of the algorithm i.e. times at
which the minimizing distribution for Y has more atoms than prescribed, we artificially double their number.
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If during the updating step atoms are found sufficiently close to each other then they are substituted by a single
atom and their respective qi consolidated into one after convergence has been established at step 3. Hence the
unknown number of atoms can be determined as the algorithm evolves.

3. Applications

This section contains several applications and numerical results of the procedures proposed. We also elu-
cidate several algorithmic aspects which has been difficult to do in the general exposition. The presentation is
broken up in two parts. In the first we deal with single-cell problems i.e. single domains with known proba-
bilistic microstructural details for which we attempt to find equivalent homogeneous representations based on
various response components of interest.

In the second part which is perhaps the most interesting for practical applications, a multi-cell problem is
examined i.e. the original domain is divided into several sub-domains (cells). The methodology developed is
used to estimate macroscale properties of each cell and these are in turn used to evaluate the response of
the whole system. This has significant computational advantages as the overall response can be obtained
by solving much smaller systems of equations. Indeed, employing well-established deterministic multiscale
techniques in random microstructures by Monte Carlo simulations would be computationally inefficient as
several, expensive runs on the full system would have to be performed. In the proposed framework, we instead
perform several runs on smaller sub-domains from which we learn about the statistical properties of an equiv-
alent homogeneous medium that can take the place of each sub-domain. These are finally used to solve on the
whole domain by employing a coarser discretization which leads of course to significant computational
savings.

It should also be noted that in all cases it was assumed that the probabilistic microstructural characteristics
were known i.e. pX was given or equivalently samples Xi drawn from pX were available. This is by no means an
easy task and the object of active research. A general framework for constructing microstructural distributions
and generating sample realizations is presented in [18].

3.1. Single-cell problems

3.1.1. One-dimensional elastic bar

We first consider the problem of a one-dimensional elastic bar of unit length, unit cross-sectional area and
uncertain modulus of elasticity. The governing equation for the displacement u(x) is
d

dx
EðxÞ du

dx

� �
¼ 0; x 2 ½0; 1� ð18Þ
with boundary conditions u(0) = 0 and Eð1Þ du
dx

��
x¼1
¼ F 0 ¼ 1. We assume the following simple model for the

random variability of E(x):
EðxÞ ¼ 1þ 0:5 cos 2p
x
x0

þ /

� �
ð19Þ
where the phase angle / is a random variable uniformly distributed in ½0; 2p� and the constant x0 is used to
control the length scale of heterogeneity. The present problem does not pose any difficulties as solutions
can be obtained in closed form but it serves as a useful illustration of the capabilities of the proposed meth-
odology. It can be easily shown that the effective elastic modulus Eeff(x), i.e. a constant elastic modulus that
gives the same prediction for u(x) as the original model is given by
EeffðxÞ ¼
Z x

0

1

EðsÞ ds
� ��1

ð20Þ
where E(x) is given in Eq. (19). It should be emphasized that the Eeff is still a random variable. Its variance i.e.
the spread around the mean decreases as the length scale x0 becomes smaller. Hence for very small x0� 1 the
variance is almost zero and Eeff can be approximated by its mean.
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We consider a discretization of the domain [0,1] into N = 1000 elements, introduce a vector X which con-
tains the values of E(x) at the centroid of each interval and assume that the elastic modulus is constant within
each interval i and equal to Xi (this should provide a good approximation to the original problem if x0� 1/N).
We evaluate the performance of the upscaling scheme introduced earlier for various cases.

Firstly for x0 = 1/100 we simulated 100 realizations Xi of vector X based on Eq. (19) and calculated the
displacement at x = 1, i.e. r(Xi). Those were used as the training sample for the vector quantization algorithm
presented in the previous section in order to find the distribution of a scalar variable Y which corresponds to
the elastic modulus of an equivalent homogeneous bar. When Y = E = const it can be readily established that
the response at x = 1 is given by rðEÞ ¼ F 0

E ¼ 1
E and therefore, the inverse of the function r in Eq. (17) is given

by r�1(u) = 1/u. As the r(Xi) are practically identical, the algorithm recovers a single atom located at
y1 = E[Eeff] for which the expected distortion as defined in Eq. (3) is 0.0.

If however we assume that x0 = 10� 1 then essentially the entries of each realization of X exhibit very little
variability and their probabilistic characteristics follow that of the random variable cos(/). We simulated 1000
realizations of vector X based on Eq. (19) and calculated the displacement at x = 1, i.e. r(Xi). Those were used
as the training sample for the vector quantization algorithm presented in the previous section in order to find
the distribution of a scalar variable Y which corresponds to the elastic modulus of an equivalent homogeneous
bar. A fairly large training sample size was used in order to explore the qualities of algorithm. Normally in
practical applications smaller samples will be available as the calculation of the response for each one can
be computationally intensive. Naturally, the larger the training sample, the more knowledge we can extract.
In order to circumvent getting trapped in local minima a random subsample consisting of 500 points was used
in every iteration. The minimal distortion as expressed in Eq. (3) when the distribution of Y consists of a single
atom was found equal to 0.20. As the algorithm progresses it discovers more informative distributions with
reduced distortion.

A rate–distortion diagram can be seen in Fig. 2. The x-axis represents the expected distortion D (Eq. (3))
and the y-axis the mutual information IðX;YÞ (Eq. (4)) at various steps. The progression of the algorithm is
such that it starts from large D and low I and moves to small D and large I (i.e. from right to left in Fig. 2). The
initial temperature was Tmax = 100 and a very slow cooling schedule with a = 1/1.001 was used. The jagged
progression of the curve is due to the Monte Carlo estimators that are used. As mentioned earlier, at each step
we used a random subsample of the original 1000-strong population of Xj consisting of 500 samples at a time.
The smallest average distortion observed was 0.82 · 10�4 i.e. approximately 4 orders of magnitude smaller
than the original. It corresponds to the distribution of the equivalent homogeneous modulus Y that is depicted
in Fig. 3 and consists of 42 atoms. As expected it approximates the distribution of 1þ 0:5 cos / / � U ½0; 2p�
(Eq. (19)).
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Fig. 2. Rate–distortion curve for the problem of the one-dimensional bar with random elastic modulus (Eq. (19), x0 = 10).
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Fig. 3. Comparison of the optimal distribution (black) for the elastic modulus of an equivalent homogeneous medium with the
distribution of 1þ 0:5 cos / / � U ½0; 2p� (exact) for the problem of the one-dimensional bar with random elastic modulus (Eq. (19),
x0 = 10).
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The practical significance of the proposed procedure is that the microstructural details as modeled by the
random vector X of dimension 1000 can be substituted by an equivalent homogeneous bar with elastic mod-
ulus Y following the distribution shown in Fig. 3. The expected error/distortion in the predictions made by the
latter model will be equal to D = 0.82 · 10�4 on average. A comparison of the cumulative distribution func-
tion of the displacement u(1) made with the exact and the upscaled models can be seen in Fig. 4.

3.1.2. Two-dimensional elastostatics

We considered a square domain of unit length consisting of two-phase heterogeneous material. Let B(x),
x 2 ½0; 1�2 the binary random field which describes the medium [18] and takes values 0 and 1 if point x lies
on phase 1 or 2, respectively. We assume the following model for the binary field B:
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Fig. 4. Comparison of cumulative distributions of displacement at x = 1 obtained using the actual microscale model and the equivalent
homogeneous approximation for the problem of the one-dimensional bar with random elastic modulus (Eq. (19), x0 = 10).
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BðxÞ ¼
0 if ZðxÞ 6 0

1 if ZðxÞ > 0

�
ð21Þ
where Z(x) is a Gaussian, zero mean, unit variance, statistically homogeneous random field with autocorre-

lation qðzÞ ¼ E½ZðxÞZðxþ zÞ� ¼ e�
jjzjj2

z0 . The parameter z0 controls the scale of variability and it was taken equal
to 0.1 in this example. The model adopted results in a medium with 50% volume fraction for each phase. A
typical realization of the medium can be seen in Fig. 5. It was further assumed that phases 1 and 2 were elastic
and isotropic with common Poisson’s ratio m = 0.3 and elastic moduli E1 = 1 and E2 = 10, respectively.

We assumed a discretization of the domain into 512 · 512 pixels and introduced the vector X of dimension
512 · 512 = 262144 to model the microstructural details i.e. the value of the elastic moduli at each pixel. The
goal is to obtain an equivalent elastic modulus Y for the whole domain that will minimize the distortions in the
response predictions with respect to the full model given by X.

We considered the loading condition in which the right edge is fixed in the horizontal and vertical direction
and a unit horizontal stress is applied on the left edge. As the target response we considered the displacements
(horizontal and vertical) at 10 arbitrarily selected points within the domain. Their coordinates are also pro-
vided in Fig. 5. In this case a similar form of Eq. (3) was used for the distortion function:
dðX;YÞ ¼ 1

M

XM

i¼1

ðriðXÞ � riðY ÞÞ2 ð22Þ
where ri denote the functions giving the displacement component at each of the 10 points selected (M = 10).
The vector quantization algorithm converges at the first iteration to a single atom distribution for Y located

at 2.67 which essentially represents the effective elastic modulus for the particular medium. The fact that it is
deterministic implies that the ergodic effects take place which is to be expected due to the linearity of the prob-
lem as well as due to the fact the length of heterogeneity is much smaller than the domain examined. The value
of the expected distortion is only 1.74 · 10�4. Hence by substituting the original random medium by a deter-
ministic medium with an elastic modulus equal to 2.67 one can obtain highly accurate predictions for the dis-
placements at a fraction of the computational cost as the solution of the equivalent homogeneous problem
does not require as fine of a discretization.

We examined the same problem by applying a uniform unit displacement on the right edge instead of stress.
We recorded the von-Mises stress at the 10 arbitrarily selected points depicted in Fig. 5. We then attempted to
Realization of the medium described by Eq. (21). Coordinates of the points indicated by red (or grey in black–white versions of this
ent) dots: A(0.910,0.660), B(0.686,0.316), C(0.830,0.730), D(0.297,0.00195), E(0.943,0.393), F(0.0938,0.379), G(0.0977,0.309),
1,0.926), I(0.990,0.719), J(0.873,0.770). (For interpretation of the references in color in this figure legend, the reader is referred to
b version of this article.)
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Fig. 6. Rate–distortion curve for the medium described by Eq. (21) when the von-Mises stress at point A (Fig. 5) is used as target response.
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derive effective properties using the stress value at the first of these points as the measure of the distortion.
With 500 training samples, the vector quantization algorithm produced the result depicted in Fig. 6 in terms
of the rate–distortion curve. The initial average distortion of 0.27 at the first iteration (corresponding to a sin-
gle atom for Y) was ultimately reduced to 0.30 · 10�1 which is the minimal possible value attained by a dis-
tribution with 42 atoms depicted in Fig. 7.

In contrast to the previous case where displacements were used as the target response, in this case the min-
imal distortion is quite significant which implies that a substitution with a homogeneous medium will not in
general provide accurate prediction in terms of pointwise stresses. This is in a sense a theoretical validation of
a common fact in engineering mechanics as stresses are highly local and in order to make accurate estimates
the microstructural details have to be accounted. Hence, in terms of stresses there is a significant information
loss when upscaling.
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Fig. 7. Optimal distribution of the elastic modulus of an equivalent homogeneous medium for the material described by Eq. (21) when the
von-Mises stress at point A (Fig. 5) is used as target response.
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This observation becomes more pronounced when stresses in more than one locations are to be predicted.
When we run the vector quantization algorithm with all 10 stresses as the target response. The minimal aver-
age distortion that was achieved was 2.1 i.e. much higher than before. This is to be expected since as it was
mentioned earlier stresses depend on the highly local heterogeneities and hence substitution with a homoge-
neous medium cannot account for these details at various locations of the domain.

This effect however is not observed when averaged stresses are sought. Indeed, we examined the same prob-
lem but used the total reaction on the right edge as the target response. In this case the vector quantization
algorithm at the first iteration gives rise to the single atom distribution at 2.67 for which the average distortion
is 0.83 · 10�3. It is noted that this is exactly the same result with the one obtained when using displacements as
the response of interest.

The optimal distortion that can be achieved is equal to 0.51 · 10�5 corresponds to the distribution of Fig. 8.
The latter is concentrated very tightly around 2.67.

3.1.3. Two-dimensional elasto-plastic material

We consider the same square domain of unit length as in the previous example consisting though of a dif-
ferent two-phase heterogeneous material. The latter is described by the Boolean model according to which the
inclusion phase is made up of the union of discs of diameter d = 0.0859375 centered at the points of a Poisson
point process on the square domain. The intensity of the point process is selected so that the volume fraction
of the matrix phase is 35%. This was intentionally chosen to be close to the percolation threshold of 68% [31]
in order to have realizations where the inclusion phase was connected and disconnected. We assume that both
materials were elastic-perfectly plastic with identical elastic properties (E = 1 and m = 0.3) but with yield stres-
ses ry1 = 1 (inclusion) and ry2 = 0.1 (matrix). The von-Mises yield criterion was used.

The domain was discretized by 128 · 128 elements and subjected to a unit uniform displacement on the
right edge while the left edge remained fixed. For sample realizations for which the inclusion (strong) phase
was connected (as in Fig. 9), the specimen was able to carry load to the support and hence the reaction of
the domain was increased compared to cases when the inclusion phase was disconnected (as in Fig. 10) and
there was no internal network to carry the load.

We attempted to find an equivalent homogeneous medium with yield stress Y that can essentially substitute
the 128 · 128 = 16384-dimensional vector X which contains the yield stress of each element. The optimal dis-
tribution of Y is depicted in Fig. 12 and corresponds to an average distortion of 0.48 · 10�4 with respect to the
reaction at the right edge. This implies that if the original random heterogeneous medium was substituted with
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Fig. 8. Optimal distribution of the elastic modulus of an equivalent homogeneous medium for the material described by Eq. (21) when the
total reaction along the right edge is used as target response.



Fig. 9. Sample realization of the Boolean model where inclusion phase is connected.

Fig. 10. Sample realization of the Boolean model where inclusion phase is disconnected.

314 P.S. Koutsourelakis / Journal of Computational Physics 226 (2007) 301–325
an equivalent homogeneous with yield stress following the distribution of Fig. 12 then the mean square error
in the prediction of the reaction of the right edge would only be 0.48 · 10�4. The rate–distortion curve calcu-
lated by the vector quantization algorithm can be seen in Fig. 11.

The same problem was analyzed for a much higher contrast in the yield stresses of the constitutive phases.
In particular it was assumed that ry2 = 0.01 (matrix) whereas ry1 = 1 was kept the same. The optimal distri-
bution for the yield stress of an equivalent homogeneous medium is depicted in Fig. 13 and corresponds to an
expected distortion of 0.14 · 10�3. As compared with the optimal distribution for ry2 = 0.1 (Fig. 12) it is
shifted to the right but not perhaps as much as the higher contrast and the new ry2 would imply. This dem-
onstrates clearly that when there is a large contrast in the properties of the constitutive phases, the geometric
variability plays a paramount role in response prediction.

3.1.4. Cohesive zone elements – fracture modeling

The concept of cohesive laws which was pioneered by Dugdale [11] and Barenblatt [1] in order to model
fracture processes and has been successfully used in a Finite Element setting by several researchers
[30,5,20]. In 3D, they introduced surface-like elements which are located at the interfaces of adjacent bulk ele-
ments and govern their separation in accordance with a cohesive law. Several crack initiation criteria have
been used with the most common being the exceedance of the interfacial strength prescribed by the cohesive
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Fig. 11. Rate–distortion curve for the Boolean medium (ry1 = 1 (inclusion) and ry2 = 0.1 (matrix)) when the total reaction along the right
edge is used as target response.
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Fig. 12. Optimal distribution of the yield stress of an equivalent homogeneous medium for the Boolean medium (ry1 = 1 (inclusion) and
ry2 = 0.1 (matrix)) when the total reaction along the right edge is used as target response.
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model [21,16]. According to this model, fracture is a gradual phenomenon in which separation takes place
across an extended crack ‘tip’ or cohesive zone and is resisted by cohesive tractions. This theory of fracture
allows the incorporation into the analysis of well-established fracture parameters such as the spall strength
(i.e. the peak cohesive traction) and the fracture energy of the material which is represented by the area under
the cohesive law. Naturally the quality of the approximation of the fracture zone depends on the size of the
cohesive elements and in general the smaller they are the more accurate the representation. We assume herein
a simple constitutive law relating interface traction–separation as seen in Fig. 14. Under monotoning loading

the normal interface traction decays as T ¼ T c 1� d
dc

� �
for d 6 dc and T = 0 for d > dc. The fracture energy Gc

is given by Gc = Tcdc/2.
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Fig. 13. Optimal distribution of the yield stress of an equivalent homogeneous medium for the Boolean medium (ry1 = 1 (inclusion) and
ry2 = 0.01 (matrix)) when the total reaction along the right edge is used as target response.

Fig. 14. Cohesive law: Tc denotes ultimate interfacial tension (when the stress reaches Tc the cohesive element is activated), dc denotes the
ultimate separation interface (when the separation reaches dc the interface tension becomes zero) and Gc denotes the fracture energy which
is equal to the area under the tension–separation curve.
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We consider an 1D interface of unit length modeled by 1000 cohesive elements. Their properties i.e. Tc and
dc are represented by the random vector X and they are assumed to be random. In the first case we assumed
that the fracture energy of each element Gc is described by the following log-normally distributed random field
Z(x):
ZðxÞ ¼ lþ r
eUðxÞ � lu

ru
; x 2 ½0; 1� ð23Þ
where U(x) is a zero mean, unit variance Gaussian field with autocorrelation qðzÞ ¼ E½UðxÞUðxþ zÞ� ¼ e�
jzj
z0 .

The parameter z0 controls the length scale of heterogeneity and it was taken equal to 0.05. The mean l

and standard deviation r of Z(x) were taken equal to 1 (the parameters lu = e0.5 and ru ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e
p

are used
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Fig. 15. Scale effect – optimal distribution of the fracture energy of an equivalent homogeneous cohesive zone when the fracture energy at
the microscale varies as in Eq. (23).
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for normalizing eU). It was further assumed that dc = 2.0 for all elements and the cohesive strengths were cal-
culated as T c ¼ 2Gc

dc
. One thousand realizations were analyzed and used as training samples (some are depicted

in Fig. 16) in order to determine the properties of a single cohesive element of unit length which would sub-
stitute the 1000 elements in a way that the predictions made with the former in terms of the total reaction vs
separation are as close as possible with the exact results using the detailed model (see Fig. 17).

In this case the equivalent homogeneous parameters Y are the cohesive strength T0 and ultimate separation
d0. Given data regarding the total traction Ti for various separation displacements di; i ¼ 1; 2; . . . ;N , the dis-
tortion function is defined as follows:
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. Sample realizations of the total traction–separation along the cohesive interface when the fracture energy at the microscale varies
q. (23).
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Fig. 17. Rate–distortion curve when the fracture energy at the microscale varies as in Eq. (23).
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dðX;YÞ ¼ 1

N

XN

i¼1

ðT iðXÞ � T 0ðdi; YÞÞ2 ð24Þ
where
T 0ðdÞ ¼
T 0 1� d

d0

� �
; d 6 d0

0; d > d0

(
ð25Þ
The arguments X and Y have been added in order to denote their implicit dependence on the detailed and
homogenized microstructural properties, respectively. Since the latter depends on T0 and d0 the solution of
Eq. (12) for determining the updated atom positions is a bit more involved and thus has been carried out
in Appendix.

At the first iteration of the vector quantization algorithm the optimal distribution with a single atom was
found at T0 = 1.0 and d0 = 2.0 i.e. with a fracture energy Gc = 1.0 = l. The corresponding average distortion
was 0.26 · 10�1. The optimal distribution found at the last iteration is depicted in Fig. 15 in terms of the frac-
ture energy where it is compared with the lognormal distribution of the fracture energy at the microscale (Eq.
(24)). It can be seen that it is far more concentrated and although its mean is also 1 as that of Z(x) its standard
deviation is 0.27� r = 1. The shape of the distribution is also significantly different than the lognormal of the
microscale details. The corresponding average distortion is 0.19 · 10�3.

In the second case it was assumed that the strength Tc of the cohesive elements varied as in Eq. (23) and the
fracture was the same for all elements Gc = 0.5. A few of the 1000 total traction–separation histories are shown
in Fig. 18 where the large variability in the maximum traction as well as the decaying path can be easily
observed. The optimal distribution found by the vector quantizer is depicted in Fig. 19 in terms of the cohesive
strength and in Fig. 20 in terms of the fracture energy. It consists of 11 atoms and results in an average dis-
tortion 0.45 · 10�2 which is significantly larger than the optimal value for the previous case. It should also be
noted that the distribution for T0 is more concentrated than the microscale lognormal, it has a mean of 1.0 and
a standard deviation 0.9. As for the fracture energy the mean is 0.45 and the standard deviation 0.011.

3.2. Multi-cell problems

For general non-linear problems involving random microstructures, the only accurate method for deter-
mining the statistics of the response is Monte Carlo simulation. The generality of the method is a direct con-
sequence of its conceptual simplicity i.e. one has simply to generate samples of the microstructure, solve for
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Fig. 18. Sample realizations of the total traction–separation along the cohesive interface when the cohesive strength at the microscale
varies as in Eq. (23).
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Fig. 19. Scale effect – optimal distribution of the cohesive strength of an equivalent homogeneous cohesive zone when the cohesive
strength at the microscale varies as in Eq. (23).
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each one and process statistically the response values. Even in problems where deterministic multiscale tech-
niques are available that can provide accurate estimates of the response for each microstructural sample, the
repetitive calls can impose a heavy or even infeasible computational burden.

In order to address this, we divide the problem domain in several sub-domains (cells or macro-elements)
and employ the upscaling technique developed in order to obtain their macroscale properties. The latter
are subsequently used in order to obtain the response on the whole domain. This is schematically illustrated
in Fig. 21. Conceptually the approach we propose is similar perhaps to the deterministic framework of the
heterogeneous multiscale method [12] or the gap-tooth scheme [25] extended to random media and microstruc-
tures. That is a microscale model is used to extract macroscale properties (such as the stiffness matrix or
forces). The upscaling is performed consistently with the statistical nature of the properties of each cell in a
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Fig. 21. Schematic illustration of microstructural upscaling in general problems.
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way that minimizes the average distortion i.e. the error in the predictions with respect to macroscale behavior.
The size of the cell does not depend on the random characteristics of the microstructure nor on the particulars
of the governing equation. Adequate compression can be achieved for various cell sizes. In a sense the proce-
dure proposed is also similar to the residual-free bubble method [6] where the effects of microstructure are
accounted for and condensed locally at the macro-element/cell level.

The advantages are immediately obvious. If we assume that obtaining response in the original system
requires the solution of a M · M system of equations which using Gaussian elimination requires operations
of the order O(M3) then its solution for N Monte Carlo simulations would require O(NM3) operations. If
we divide the domain into k sub-domains, the response of each one can be obtained by solving a system of
m · m equations where m ¼ M

k . Thus, even if N simulations are used to extract the macroscale response of each
sub-domain (in practice usually much smaller numbers are needed) then the total number of operations would
be O(Nkm3). Hence the savings in terms of the number of operations would be of the order of k2 (i.e. if k = 10
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sub-domains are introduced the computations would be 100 times faster. It should be noted that the cost of
solving the k · k is generally negligible for large M).

The critical component of course is the upscaling scheme that should able to condense the microstructural
details in each sub-cell in a way that does not affect the accuracy of macroscale response. To illustrate the
capabilities of the proposed methodology we consider a one-dimensional bar of unit length, unit cross-sec-
tional area and made from an elastic–plastic material with isotropic hardening (the elastic modulus E was
taken equal to 1). We assume that the microscale vector X is 1000-dimensional and that the yield stress
ry(x) and hardening modulus K(x) vary according to the following random fields:
Fig. 22
Eqs. (2
ryðxÞ ¼ r1 þ ðr2 � r1ÞUðZrðxÞÞ; x 2 ½0; 1� ð26Þ
KðxÞ ¼ UðZKðxÞÞ; x 2 ½0; 1� ð27Þ
where Zr(x) and ZK(x) are zero mean, unit variance, independent Gaussian random fields with the same

autocorrelation qðDxÞ ¼ e�
jDxj
x0 and U(z) is the standard normal cumulative distribution. The resulting ran-

dom fields for ry(x) and K(x) are uniformly distributed in ½r1; r2� and [0, 1] respectively (the values
r1 = 0.3 and r2 = 0.6 were used). It should also be noted that K = 0 corresponds to a perfectly plastic mate-
rial. The parameter x0 is the correlation length and controls the length scale of heterogeneity (it was taken
equal to 1/100 in this study).

The bar was divided into k = 10 sub-domains of equal length and we employed the upscaling methodology
previously presented in order to evaluate the tangential stiffness of each bar for various elongation values. For
that purpose 100 sample realizations were used in order to train the vector quantizer. The rate–distortion evo-
lution is depicted in Fig. 22. In Fig. 23, two distributions of the tangential stiffness at various elongations are
depicted. The first corresponds to average distortion 0.23 and has 2 atoms and the second to distortion of
0.00801 and has 22 atoms. The latter is in fact the optimal distribution i.e. the one that minimizes the average
distortion.

These distributions for the stiffnesses of each sub-domain were subsequently used in a 10 · 10 system in
order to predict the total reaction at the end of the bar when the latter is fixed at x = 0 and a displacement
is applied at x = 1. The results (in terms of the histograms of the reaction at various displacements) as com-
pared with the exact values (i.e. those obtained when solving the full 1000.1000 system as shown in Fig. 24) for
the two distributions of the sub-domain stiffness depicted in Fig. 23. It is observed that the predictions made
are in good agreement and markedly better for the optimal distribution. This is a testament to the quality of
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. Rate–distortion curve for each of the sub-domains of the elasto-plastic bar where the yield stress and plastic modulus vary as in
6) and (27), respectively.
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Fig. 23. A sub-optimal (left) and the optimal (right) distribution of the tangential stiffness of an equivalent homogeneous sub-domain of
the elasto-plastic bar where the yield stress and plastic modulus vary as in Eqs. (26) and (27), respectively.

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3
Displacement

0

0.3

0.6

0.9

1.2

R
ea

ct
io

n

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3
Displacement

0

0.3

0.6

0.9

1.2
R

ea
ct

io
n

Fig. 24. A comparison of the distribution of the reaction for various elongations between the results obtained using the actual microscale
model and the sub-optimal (left) and optimal (right) upscaling schemes of Fig. 23.
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the upscaling scheme that was employed in each of the 10 sub-domains. It is also observed that the predictions
are significantly better for larger displacements.

4. Conclusions

A consistent theoretical and computational framework has been presented in order to upscale random
microstructural information. We employed concepts and tools from information theory in order to determine
equivalent homogeneous approximations that are optimal in terms of the accuracy of the response predictions.
The method proposed apart from providing the optimal upscaling scheme gives a quantitative measure of the
error introduced by the compression of the microstructural data. At the core of the proposed methodology lies
a very efficient vector quantization procedure based on the technique of Deterministic Annealing. The training
of the vector quantizer is performed using results obtained on sub-domains either from experiments or by a
deterministic legacy solver. It is envisioned that this scheme can be employed even if constitutive equations are
not known in the macroscale (as for example in the equation-free models of Kevrekidis et al. [25,17]). Several
applications in linear and non-linear solid mechanics have been presented. The methodology proposed can in
principle be applied in various other physical systems.
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Appendix.

Let the distortion function be defined as in Eq. (24):
dðX;YÞ ¼ 1

N

XN

i¼1

T iðXÞ � T ðdi; YÞð Þ2 ð28Þ
where Ti(X) denote N total reaction values for separation di and
T ðdi; YÞ ¼ T 0ð1� di
d0
Þ if di 6 d0

0 if di > d0

(
ð29Þ
In the following we drop the arguments X and Y for notational simplicity. Suppose that the di are ordered in
ascending order and that there is n 6 N such that: d1 6 d2 6 	 	 	 dn 6 d0 6 	 	 	 dN . Then the distortion function
obtains the form:
dðX ; Y Þ ¼ 1

N

Xn

i¼1

ðT i � T ðdiÞÞ2 þ
XN

i¼nþ1

T 2
i ð30Þ
The atom update Eq. (12) dictates that Y should be selected so that
X
X

pðXÞp�ðY=XÞ odðX;YÞ
oY

¼ 0 ð31Þ
where Y ¼ ðT 0; d0Þ i.e. it a two-dimensional vector. Hence in the equation above
odðX;YÞ
oY

¼ 2

N

Xn

i¼1

ðT i � T ðdiÞÞ
oT i

oY
ð32Þ
The gradient of Ti(di) with respect to Y is given based on Eq. (29) by
oT i

oT 0

¼ 1� di

d0

oT i

od0

¼ T 0

di

d2
0

ð33Þ
It should be noted that apart apart from T0 and d0, n is also an unknown. By considering the partial deriv-
atives w.r.t. to T0 and d0 the following two equations arise:
X
X

pðXÞp�ðY=XÞ an �
pn

d0

� �
¼
X

X

pðXÞp�ðY=XÞT 0 n� 2
bn

d0

þ cn

d2
0

 !
ð34Þ

X
X

pðXÞp�ðY=XÞT 0

pn

d2
0

¼
X

X

pðXÞp�ðY=XÞT 2
0

bn

d2
0

� cn

d3
0

 !
ð35Þ
where an ¼
Pn

i¼1T i, bn ¼
Pn

i¼1di, cn ¼
Pn

i¼1d
2
i and pn ¼

Pn
i¼1T idi. Let An and Pn denote the expectations of an

and pn with respect to p(X)p*(Y/X) and since
P

XpðXÞp�ðY=XÞ ¼ qðYÞ we have
An �
P n

d0

¼ T 0qðYÞ n� 2
bn

d0

þ cn

d2
0

 !
ð36Þ

P n ¼ T 0qðYÞ bn �
cn

d0

� �
ð37Þ
Solution of the aforementioned equations leads to the following values:
d0 ¼
Ancn � P nbn

PAnbn � nP n
ð38Þ
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and
T 0 ¼
1

qðYÞ
An

n� bn
d0

ð39Þ
It must be noted that d0 above must also satisfy dn 6 d0 6 dn+1. There is a possibility that multiple pairs of T0

and d0 satisfy the aforementioned conditions in which case the one with the least average distortion was
selected.
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